Building AI Agents with Python 2026

Create autonomous AI agents that reason, plan, use tools, remember, and act – using BabyAGI, AutoGPT-style clones, LangGraph and more.

1. What are AI Agents?

In 2026, AI agents are autonomous programs that can:

  • Understand goals
  • Plan multi-step actions
  • Use external tools (search, code execution, APIs)
  • Remember past interactions
  • Self-correct and iterate

2. BabyAGI – Classic ReAct-style Agent


from langchain_openai import ChatOpenAI
from langchain.agents import AgentExecutor, create_react_agent
from langchain.prompts import PromptTemplate
from langchain.tools import Tool

llm = ChatOpenAI(model="gpt-4o", temperature=0)

tools = [
    Tool(
        name="Search",
        func=lambda q: f"Search results for '{q}'",  # Replace with real search tool
        description="Useful for searching the web"
    ),
    Tool(
        name="Calculator",
        func=lambda x: str(eval(x)),
        description="Useful for math calculations"
    )
]

prompt = PromptTemplate.from_template(
    """Answer the following questions as best you can. You have access to the following tools:

{tools}

Use the following format:

Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question

Question: {input}
{agent_scratchpad}"""
)

agent = create_react_agent(llm, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)

response = agent_executor.invoke({"input": "What is the capital of France?"})
print(response["output"])
        

3. AutoGPT-style Agent (Self-Planning Loop)


from langchain_openai import ChatOpenAI
from langchain.agents import AgentExecutor, create_openai_tools_agent
from langchain.prompts import ChatPromptTemplate

llm = ChatOpenAI(model="gpt-4o", temperature=0.7)

prompt = ChatPromptTemplate.from_messages([
    ("system", """You are an autonomous AI agent. Your goal is {goal}.
You can use tools to help achieve it. Think step by step."""),
    ("human", "{input}"),
    ("placeholder", "{agent_scratchpad}"),
])

tools = [...]  # your tools here

agent = create_openai_tools_agent(llm, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True, max_iterations=15)

result = agent_executor.invoke({
    "input": "Research and write a short report on AI agents in 2026",
    "goal": "Create a concise report on the state of AI agents in 2026"
})
print(result["output"])
        

4. LangGraph – Most Flexible & Modern (2026)


from langgraph.graph import StateGraph, END
from typing import TypedDict, Annotated
import operator

class AgentState(TypedDict):
    messages: Annotated[list, operator.add]
    next: str

def supervisor(state):
    # Decide next agent
    return {"next": "researcher"}

def researcher(state):
    return {"messages": ["Research complete"]}

workflow = StateGraph(AgentState)
workflow.add_node("supervisor", supervisor)
workflow.add_node("researcher", researcher)
workflow.add_conditional_edges("supervisor", lambda s: s["next"], {"researcher": "researcher"})
workflow.add_edge("researcher", END)

graph = workflow.compile()
result = graph.invoke({"messages": ["Build AI agent report"]})
print(result)
        

5. Deployment & Scaling Tips 2026

  • Local: Ollama / LM Studio + FastAPI
  • Cloud: LangChain + Groq / Together AI / Fireworks
  • Docker + Railway / Fly.io / Vercel
  • Caching: Redis for repeated tasks
  • Monitoring: LangSmith, Phoenix, or Prometheus

Ready to build your first multi-agent system?

Explore All Tutorials →