Local AI with Ollama + Python Web Apps 2026

Run powerful LLMs completely offline on your own hardware and expose them as secure web apps/APIs using FastAPI or Flask.

Why Run AI Locally in 2026?

  • Zero cost after hardware (no per-token API fees)
  • 100% privacy – data never leaves your machine
  • No rate limits or censorship
  • Offline access (air-gapped, remote sites, travel)
  • 2026 reality: Llama 3.1/3.2 8B/70B runs fast on RTX 4090 / M3 Max / Ryzen AI

Prerequisites

  • Python 3.11+ (3.14 recommended)
  • Ollama installed – https://ollama.com/download
  • GPU: NVIDIA (≥12 GB VRAM) or Apple M-series (≥16 GB unified memory)
  • Models: Llama 3.1 8B / Mistral Nemo / Phi-3.5 / Gemma 2

1. Install & Run Ollama Locally


# Install Ollama (one-time)
# Go to https://ollama.com/download → install for your OS

# Start Ollama server in terminal
ollama serve

# In another terminal – pull a model (8B is good balance)
ollama pull llama3.1:8b

# Test it
ollama run llama3.1:8b
>>> Hello! How can I help you today?
        

2. Expose Ollama as FastAPI API


# app/main.py
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from langchain_ollama import ChatOllama
import os

app = FastAPI(title="Local Ollama API 2026")

llm = ChatOllama(model="llama3.1:8b", base_url="http://localhost:11434")

class ChatRequest(BaseModel):
    prompt: str
    system: str = "You are a helpful assistant."

@app.post("/chat")
async def chat(request: ChatRequest):
    try:
        response = llm.invoke(
            request.prompt,
            system=request.system
        )
        return {"response": response.content}
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

# Run: uvicorn main:app --reload
        

3. Alternative: Expose via Flask (Simpler)


# app.py (Flask version)
from flask import Flask, request, jsonify
from langchain_ollama import ChatOllama

app = Flask(__name__)

llm = ChatOllama(model="llama3.1:8b")

@app.route("/chat", methods=["POST"])
def chat():
    data = request.json
    prompt = data.get("prompt")
    system = data.get("system", "You are a helpful assistant.")

    if not prompt:
        return jsonify({"error": "No prompt provided"}), 400

    try:
        response = llm.invoke(prompt, system=system)
        return jsonify({"response": response.content})
    except Exception as e:
        return jsonify({"error": str(e)}), 500

if __name__ == "__main__":
    app.run(debug=True, port=5000)
        

4. Simple Web Chat Frontend





    Local AI Chat
    


    

Local Ollama Chat

5. Advanced Tips & Deployment 2026

  • Use LangChain + Ollama for RAG, agents, memory
  • Quantize models: 4-bit/8-bit for 70B on 24 GB GPU
  • Run multiple models: Ollama + Open WebUI (nice UI)
  • Secure API: Add API keys, HTTPS, rate limiting
  • Deploy: Docker + Railway/Fly.io/Render (free tier)

Ready to run your own local AI?

Explore All Tutorials →